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PARTIAL COORDINATION NUMBERS OF 
SQUARE-WELL BINARY FLUID MIXTURES 

D. M. HEYES 

Department of Chemistry, University of Surrey, Guildford GU2 5XH, UK 

(Received 16 December 1991) 

A coordination number model for single component square-well fluids is generalised here to apply to 
binary square-well fluids using a one-fluid mean field approach. Based on Monte Carlo computer 
simulations of this work and of others we test this new predictive model for the species-resolved 
coordination numbers of square-well binary mixtures. The model is found to be valid for unequal values 
for the core diameter, interaction range and well-depth in the relative range - x 2 for the two components. 
The predictions of the new model as a function of composition, density and temperature are in exceptional 
agreement with the Monte Carlo computer simulation results. 

KEY WORDS: Monte Carlo computer simulation, coordination numbers, square-well fluid mixtures, 
Quasi-Chemical Approximation. 

1 INTRODUCTION 

The square-well fluid combines the essential features (repulsive and attractive forces) 
of real fluids with an analytic simplicity (collision diameter, 0, well-depth, E and 
reduced well-width, A - 1) which makes it an analytically tractable model fluid for 
the structural and thermodynamic properties of real molecular fluids. One particular 
feature which is useful is the unambiguous definition of the local coordination number 
for the square-well system, which enables the equation of state to be expressed 
formally and exactly in terms of it. Lattice-based models of fluids, such as the 
Quasi-Chemical Approximation have made use of this to develop equations of state 
for mixtures of square-wells based on expressions for the local coordination numbers 
between the Therefore a reasonable local coordination number model 
specifies the microstructure of the square-well fluids and forms the basis for de- 
veloping equations of state and other thermodynamic functions. The “local composi- 
tion” or local mole fraction around each particle can deviate from the average 
composition and this can be parameterised and empirically introduced into the 
equation of state’-3. In this study we are interested in mixtures of square wells, 
concentrating on the preferential association of the two species both directly from 
simulation and from a proposed expression for the local compositions based on the 
Quasi-Chemical Approximation. In the past, this has led to density-dependent 
mixing rules for the mixture parameters in simple cubic equations of state. Although 
in this study we will concentrate on the coordination numbers. 
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206 D. M. HEYES 

In this work we build on the foundations of the previous workers. We investigate 
by Monte Carlo computer simulation, binary mixtures of square-wells over a wide 
temperature, density and well-range (previous studies have been confined to a 
well-width equal to half the collision diameter). Making use also of previous 
simulation data, we generalise, to arbitrary well-width, previous analytic expressions 
which reproduce the Monte Carlo local coordination data. 

2 THEORETICAL BACKGROUND 

Consider a square-well potential, 

& 4 r )  = m, r I oij 

- - - q j ,  oij < r < /.ijoij 

= 0, r > iijeij 

The hard-core diameter, cij and interaction energy, E , ~  between the two particles is 
given by the usual Lorentz-Berthelot combining rules 

and 

and for the cut-off radius 

jlijeij = (i.ii5ii + i j joj j)/2.O. (4) 

For square-well potentials cij > 0 and this finite negative energy interaction region 
extends between cij < r < j.ijoi,. Therefore, the square-well molecule has two length- 
scales, the core-diameter, cii and interaction range, iiioii for the self-interactions, and 
corresponding values for the cross, (1, interactions. 

The number of j particles in the shell r - A/2 < r < r + A/2 from a central 
molecule, i, is on average, 

dnji = 4npjgj i (r)r2dr.  ( 5 )  

Therefore the coordination number o f j  particles about i are, 
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COORDINATION OF SQUARE-WELL MIXTURES 207 

The total coordination number of particles of all species about a central i particle is 
given by 

V 

zi = C nji, (7) 
j 

where there are v species. In this study we are considering a binary mixture so v = 2 
here. Let these species be i = 1 and i = 2. For the binary mixture let the total number 
of 12 pairs in the system at a separation, r, be Nl,(r). Under all circumstances, a 12 
interaction must also mean there is a 21 interaction. Therefore, Nl,(r), must equal, 
NZl(r), the number of 21 pairs at a separation r within the whole system. We have, 

But, in a system of N ,  molecules of species 1 and N ,  molecules of species 2 we have, 

using the definition of the local coordination number, defined in Eq. (6) and similarly, 

Consequently from Eq. (8) we have, 

Dividing both sides of Eq. (1 1) by N = N ,  + N , ,  we have, 

where x, = N,/N and x2 = NJN, the mole fractions of each species. To reduce Eq. 
(12) further we define a local mole fraction for species 1 and 2, 

where z ,  = nZ1 + n , ,  and z2 = nZ2 + n12 from Eq. (7). Substitution of Eq. (13) and 
(14) into Eq. (11) gives, 

If z1 = z ,  then we have the Flemr condition,' x2x,, = x,x2,.  Clearly in general 
z1 # z ,  so we cannot expect this balance to hold, but Eq. (15) is exact under all 
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208 D. M. HEYES 

circumstances. As, zz = n , ,  + n 2 , .  x l Z  = nI2/z2 and x22 = n2,/zz, we have, 

X I 2  + x22 = 1, 

then substituting Eq. (16) into Eq. (15) we have, 

X,Z,(l  - Xz2) = X I Z 1 X 2 I .  (17) 

Rearrangement of Eq. (17) gives, 

x,z2 = X l Z l Z Z l  + X2Z2X2, .  (18) 

This is known as the McDermott-Ashton condition’. By symmetry we have, 

Both the Flemr and McDermott-Ashton conditions are exact and follow from the 
detailed balance of pairs. Another exact relationship is the sub-species pair radial 
distribution function condition, 

This is because by definition, 

and as N12(r) = N21(r) for any arbitrary binary mixture then Eq. (20) follows from 
Eq. (21) and (22). 

Thus far we have the following exact “local balance” conditions, which can be 
derived from the definitions of the component terms, 

Equations (23)-(27) follow from the local mole fraction definitions. Equations 
(25H27) also make use of the requirement that the number of interacting 1-2 pairs 
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COORDINATION OF SQUARE-WELL MIXTURES 209 

in the whole system must equal the number of 2-1 pairs (i.e., Nlz(r) = N21(r)). In 
order to specify the local mole fractions exactly, we require another relationship 
between xlZ, xz l ,  x l l  and xZ2. Unfortunately, no such exact relationship can be 
derived. We are forced to resort to an alternative approximate approach. We consider 
a relationship of the form,3 

Together with Eqs. (23) and (24) we have, 

There is no exact analytical expression for the parameter f, which must be included 
in a semi-empirical fashion. One approach is to use a lattice model for liquids4, which 
considers the interrelationship between x lZ,  xZ1, x1 and x2, to be that of a “chemical 
equilibrium”. This is called the Quasi-Chemical Approximation, QCA. Consider a 
lattice of coordination number z upon which is distributed, N ,  , molecules of species-1 
and N ,  molecules of species-2. Pairs interacting within, z ,  are considered to form 
pair molecules, so that there is an equilibrium of the form, 

(1 - 1) + (2 - 2) = 2 x (1 - 2), (30) 

The equilibrium constant, K, for this “reaction” is by definition, 

The van? Hoff isochore can be used to specify the temperature dependence of K, 

( K ) v  = - A U / R ,  

where A U / R  = ( 2 q 2  - c1 - c2,)/3, where /3 = l/k,T, as usual. Integration of Eq. (31) 
using Eq. (32) gives, 

Where N$ denotes the value of N j j  for pure random mixing. A similar formula comes 
from a treatment of the coordination numbers in the zero density limit. At low density, 
p -+ 0, the radial distribution function, gi,(r), follows 

gij(r)  -, exp( - 4ijS) = exp( -gij/3), aij < r < Ilijoij, (34) 
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4lK n.. -+ - (j.3 - 
" 3 

l)pio: exp( - 

and 

where w = 2c12 - e l l  - E ~ ~ .  Similarly for, 

and 

( 3 5 )  

Equations (34-38), while adequate at low fluid density, fail to account for the 
many-body effects that become increasingly important in the dense fluid approaching 
to fluid close-packing. This is manifest in deviations in local composition ratios from 
these simple analytical forms. The local composition effects dominated by the 
influence of the attractive well interactions evident in the local composition ratios of 
Eqs. (36-38) are most important at low density, becoming less influential at higher 
densities because of packing constraints in the dense fluid. Nevertheless, Eqs. (36-38) 
do provide useful reference formulae for the coordination number that can form the 
basis for modification in the high density limit. Any modifications to the ratios of 
Eqs. (36-38) must reduce to these equations as p + 0. 

In this study we concentrate on an analytical expression for coordination number 
of binary mixtures using density-dependent mixing rules. Simulation data is used to 
assess the adequacy of the expressions chosen. The main purpose of this study is to 
build upon the previous work performed on this subject to take into account the 
effect of density, mole fraction of each component, diameter ratio and well-depth 
ratiolP6 on the species local coordination numbers. This formidable task (given the 
number of variables to be accommodated in a simple general expression) is founded 
upon a generalisation to mixtures of a formula proposed by Heyes', and subsequently 
modified by Heyes and Aston' for the local coordination number of single component 
square-well fluids which was found successful in these studies. 

In the previous work in this series for single component square-well fluids we used 
the formula for the coordination number', 

n = c,R/(l + p(R - l)), (39) 
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COORDINATION OF SQUARE-WELL MIXTURES 21 1 

based on the Quasi-Chemical Approximations (QCA). The variable, co is the 
coordination number based on a random distribution of binary spheres. The 
remaining part of Eq. (39) is the density-dependent and temperature-dependent 
adhesive interaction correction to this term. The innovation in the previous study’, 
was to modify the usual expression for co to take better account than before of the 
local density of the hard-sphere fluid, based on the true hard-sphere pair radial 
distribution function. In particular, we incorporated the pair radial distribution 
function at contact, g(a) as a density-dependent parameterisation within the definition 
for co . This incorporates essentially exact local coordination of the hard-sphere fluid. 
For co, we have8, 

where p o  = 1 . 6 2 5 ~ - ~  is the reference density introduced by Heyes and Woodcock’. 
The term, co, becomes exact as J. -+ 1. In fact as A -+ 1 we find the last term in Eq. 
(30) reducing to g(o) the pair distribution function at contact. To a very good 
approximation, for hard-spheres’, 

Now 

R = exp(asp) (42) 

where 

(43) = 1 - cc,p/5 

where from the previous work: a, = 5.2708, cc2 = 0.491 and p o  = 1.625. The term, a 
in Eq. (42) goes some way towards incorporating in the model the diminishing role 
of temperature on the coordination number as density increases, and also the effect 
of A, while ensuring the analytically correct p -+ 0 limit for c. Both the denominator 
in Eq. (39) and the density dependent term in Eq. (39) are incorporated to reduce 
the temperature and density dependence of the coordination number as density 
increases towards the dense fluid-solid transition. 

Now we propose a generalisation of the above treatment for binary square-well 
mixtures using the one-fluid generalisation rules found successful in other works’-4. 
(There are several variations on the combination rules used to apply single-compo- 
nent formulae to multi-component systems. The one we have chosen conforms to 
one of the more successful and popular of choices.) Equation (40), the hard-sphere 
component to the coordination number is generalised to account for (a) a general 
increase in the number density introduced by a one-fluid equivalent number density, 
p ,  but nevertheless (b) for each species pair, ij, it must return to the specific parameters 
accounting for the core size and interaction range of that particular pair. Following 
broadly the same combination rules used in previous treatments, to go from the 
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212 D. M. HEYES 

single component to the multi-component system, Eq. (30) then becomes, 

cijo = (47c/3)&?; - l)rijp(l + exp(-a,rijp(iij - 1))((1 - r i jp /p0) - ’  - I)), (44) 

Q = C x i x j  exp(crijeijp), 

where 

(45) 

3 - 3  r i j  = aij/a , 

nij = cijoR/(l + rijp(Q - l)), (48) 

and 

c3 = 1 xi.: (49) 

The mixing rules in this model predict random mixing in the high-density limit and 
Boltzmann factor non-randomness at low density. The model predicts the local pair 
dependent coordination numbers in Eq. (48). This can then be used to calculate the 
local mole fractions (e.g. ,  Eqs. (13) and (14)) and the derived ratios (Eqs. (46-48)) that 
probe the extent of non-ideality of mixing as a function of the density, temperature, 
mole fractions and the other molecular parameters. In contrast, it does not predict 
the density of the mixture, only the local coordination numbers. The number densities, 
N , o : , / V  and N , a : , / V  are parameters that must be introduced into the model. It 
cannot give information about the equation of state, without additional assumptions. 

3 RESULTS AND DISCUSSION 

We performed SW simulations with N = 256 over most of the fluid part of the phase 
diagram for over 2000 p, 8, E. combinations. This was combined with data from 
references (2,3,5) and (10). With so many variables it is a formidable task to assess 
or even represent the adequacy of any model. All that can be realistically achieved 
is for the model to be tested at a selection of representative state points where 
non-ideality is most likely to be manifest. Therefore, we consider state points at 
temperatures just below or just above the critical temperature of the mixture. 
Although this is not known, it can be estimated from the following empirical formula, 

The critical temperature of the pure phase, Tc,i is estimated by a fit to the data from’ ’. 
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COORDINATION OF SQUARE-WELL MIXTURES 213 

For each species, with its own l value, the critical temperature can be estimated as", 

TJE = (A - 0.4)2. (52) 

For the states considered below we consider, T / q l  = 2.0 and 3.0, which are either 
above or just below the estimated critical temperature. Therefore at most of the states 
considered we are in a single supercritical fluid phase, not in the liquid-vapour 
two-phase region. For those states just within the co-existence envelope (i.e., inter- 
mediate density and = 2.0 and li = 1.75) we are only in the spinodal region 
at worst. Within a finite-N simulation cell of several hundred particles this will not 
manifest two-phase co-existence. All it will do is manifest enhanced clustering, evident 
in Figure 2. 

0.0 0.2 0.4 0.6 0.8 

Figure I Total local coordination number, z1 by MC simulation for three values of R ,  given on the figure. 
The band of state points is prescribed by: xI  = x2 = 0.5, E& = 2.0, u22/u11 = 1.0, Tiel,  = 2.0 and 
i, = iZz = 1 . 1 ,  1.5 and 1.75. Key: 0, simulation, and A, Model results based on Eq. (38). 
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Figure 2 As for Figure I .  except that the corresponding values for z 2  are presented 

The simulations reported here were conducted with x1 = x2 = 0.5 because the 
equimolar mixtures show the largest deviations from ideality. In Figure 1, we show 
the MC and model local coordination numbers for component-1. z l  and in Figure 
2 the corresponding, r2 ,  are shown. We chose, E ~ ~ / E ~  = 2.0, 0 2 2 / ~ 1  = 1.0, 
T/cl = 2.0 and i., = i22 = 1.1, 1.5 and 1.75. At any number density, the coordina- 
tion number increases with i. because more particles can enter within the interaction 
range of an arbitrarily chosen central particle. Therefore as the relevant A i j  increase 
then for any specific value of p the average coordination number will increase. This 
is observed in Figures 1 and 2. For iij+ 1 the rzij(iijoij) versus j curve is concave. 
As the interaction range increases we find that the coordination number becomes 
saturated as it includes the whole of first coordination shell. 

The model fits for the zi are reasonably good over the whole of the studied region. 
In Figure 3 and 4 we present the corresponding z1 and z2  for the fixed parameter 
combinations x, = x2 = 0.5, E ~ ~ / E ~ ~  = 2.0, oZ2 /o I ,  = 0.5, = 3.0 and A l l  = 1.2 
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COORDINATION OF SQUARE-WELL MIXTURES 215 

0.J 0.2 0.3 0.4 0.5 0.6 

P 
Figure 3 As for Figure 1 ,  except that x1 = x2 = 0.5, E ~ ~ / E ~  = 2.0, (r22/(r11 = 0.5, T/cI = 3.0 and 
i,, = 1.2 and A,, = 1.4. Key: 0. simulation, and A, Model results based on Eq. (39). 

and A,, = 1.4. Again for this particularly asymmetric combination of parameters the 
match between MC and the model of Eq. (48) is exceptional, vindicating the 
underlying quasi-one-fluid approach. 

In the tables we illustrate the trends in the local coordination numbers and their 
ratios. Table 1 has the simulation and model values for x l l  and x,,. We consider 
two sequences of simulation. The first series, Series A, has x1 = x, = 0.5, E ~ ~ / E ,  = 2.0, 
022/011 = 1.0, T / q l  = 2.0 and A l l  = A,, = 1.1,1.5 and 1.75. This shows for x l l  in the 
low density limit a value for x1 -= xl. Conversely, at the same state points we have 
xZ2 > x2. This indicates that the local fractional density of species-1 about species-1 
within their mutual interaction distances is lower than the mean mole fraction. Also 
the local fractional density of species-2 about species-2 within their mutual interaction 
distances is greater than the mean mole fraction. Species-2 attracts species-2 (and 
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01 0.2 0.3 0.4 0.5 0.6 

P 
Figure 4 As for Figure 3, except that :2  are shown 

also species-1) more strongly than species-1 attracts itself because in this case, 
E ~ ~ / E ~ ~  = 2.0. Therefore species-1 has fractionally fewer of its own kind in the first 
coordination shell than on average. It is possible for xii  # x i  because the square-well 
interaction range &aii is finite. (Clearly, as lii + GO, xii  -+ xi).  This effect diminishes 
as density increases because of the increasing importance of excluded volume effects. 
The xii  -+ x i  trend as p --* pmax = 0.9428a3, is strongest for the species-l, the species-2 
maintains its relative excess of its own kind to much higher volume fractions. These 
trends are well-reproduced quantitatively by the mean-field model proposed above. 
Also in Table 1 we consider the situation where particle-2 has half the core diameter 
of species-1. The parameter combination for this second series of calculations, called 
Series B, is, x1 = x2 = 0.5, E ~ ~ / E ~  = 2.0, ~ 7 ~ ~ / a ~  = 0.5, TIE1 = 3.0 and l1 = 1.2 and 
A 2 2  = 1.4. Here the same trends with density are apparent as for Series A, but 
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Table 1 
(MOD). Key: x 1  = x 2  = 0.5. 

Local mole fractions, x i i ,  calculated directly from simulation (MC) and from the QCA model 

0 2 / 0 1  E Z I E 1  P TIE11 1, 1, ‘ 1 1 . M D  X 1 l . M O D  X 2 2 . M D  X 2 2 . M O D  

1 .om 
1.000 
1.000 
1.000 
1.000 
1 ,000 
1.000 
1.000 
1.000 

0.500 
0.500 
0.500 
0.500 
0.500 

2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 

2.000 
2.000 
2.000 
2.000 
2.000 

0.100 
0.500 
0.600 
0.900 
0.925 
0.100 
0.900 
0.100 
0.900 

0.1 12 
0.225 
0.281 
0.338 
0.619 

2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 

3.000 
3.000 
3.000 
3.000 
3.000 

1.100 
1.100 
1.100 
1.100 
1.100 
1.500 
1.500 
1.750 
1.750 

1.200 
1.200 
1.200 
1.200 
1.200 

1.100 
1.100 
1.100 
1.100 
1.100 
1.500 
1.500 
1.750 
1.750 

1.400 
1.400 
1.400 
1.400 
1.400 

0.450 
0.460 
0.460 
0.511 
0.503 
0.420 
0.502 
0.420 
0.521 

0.595 
0.599 
0.608 
0.608 
0.635 

0.45 1 
0.460 
0.462 
0.469 
0.470 
0.450 
0.464 
0.450 
0.461 

0.604 
0.614 
0.620 
0.628 
0.728 

0.562 0.570 
0.551 0.557 
0.543 0.553 
0.546 0.544 
0.546 0.543 
0.632 0.570 
0.517 0.551 
0.686 0.571 
0.533 0.555 

0.373 0.373 
0.368 0.370 
0.369 0.368 
0.360 0.367 
0.368 0.361 

superimposed on top of the purely geometric effect arising from the difference in the 
particle core-diameters and their interaction ranges, = lipii.  

Series B has xl l  > x1 and xZ2 < x2, the reverse trend to that evident for series A. 
This is intuitively reasonable because as species-1 gets larger than species-2, then the 
particles of species-2 are forced to live in the intersticies of a network or “lattice” 
formed by the molecules of species- 1, which is largely undistorted locally as a result. 
More of larger particles can fall within their own coordination spheres than the mean 
value would indicate. Conversely, as the small particles are forced to occupy the 
spaces of the larger particles, they are on average further from one another and have 
fewer neighbours of their own kind than the mean mole fraction would indicate. 
There is a favouring of the number of 11 contacts as opposed to the number of 22 
contacts, explaining the values: x l l  - 0.6 and xz2 - 0.4. At fixed mole fraction, the 
n, increases with decreasing rsZ2/g1 As species-2 becomes smaller its molecules 
exert a reduced screening influence on the species-1 particles. This allows more 
species-1 molecules to come within the interaction range of one-another and also 
fewer of species-2 to interact with species-2. The total coordination number of species, 
z1 increases as the ratio c ~ ~ ~ / c ~ ~  decreases, and vice versa”. Density does not have 
as pronounced effect on the Series B, x i i ,  as for the Series A, x i i .  Note that the 
mean-field model fits exceptionally well to the simulation data. 

In Table 2 we present the corresponding data for the cross-species local mole 
fractions, x12 and xZ1. Recall that the convention is that 12 is to be interpreted as 
species-1 about a single particle of species-2, and vice versa. For Series A, we note 
that x I 2  is lower than x l ,  the value for random mixing. We interpret this as arising 
from the definition xl2 = nlz/z2. The total coordination number of species-2 is higher 
than that of species-1 due to its deeper attractive well. The increase in the magnitude 
of the denominator causes xI2 < x l .  Conversely, xZ1 > x2 because of the decrease 
in z1 compared to z 2 .  This is a valid conclusion as n 1 2  = nZ1 for the case when 
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218 13. M. HEYES 

Table 2 
(MOD). Key: x1 = x2 = 0.5. 

Local mole fractions, xij, calculated directly from simulation (MC) and from the QCA model 

a2 I f f1  & 2 / %  P T / E ~ ~  R ,  i. X 1 2 . M D  X 1 2 . M O D  X21.MD X 2 1 M O D  

1.000 2 . W  0.100 2.000 1.100 1.100 0.438 0.430 0.550 0.549 
1.000 2.000 0.300 2.000 1.100 1.100 0.451 0.437 0.533 0.545 
1.000 2.000 0.600 2.000 1.100 1.100 0.457 0.447 0.540 0.538 
1.000 2.000 0.900 2.000 1.100 1.100 0.454 0.456 0.489 0.531 
1.000 2.000 0.100 2.000 1.500 1.500 0.368 0.430 0.580 0.550 
1.000 2.000 0.400 2.000 1.500 1.500 0.434 0.437 0.523 0.545 
1.000 2.000 0.900 2.000 1.500 1.500 0.483 0.449 0.498 0.536 
1.000 2.000 0.100 2.000 1.750 1.750 0.314 0.429 0.580 0.550 
1.000 2.000 0.500 2.000 1.750 1.750 0.446 0.437 0.498 0.544 
1.000 2.000 0.900 2.000 1.750 1.750 0.467 0.445 0.479 0.539 

0.500 2.00 0.112 3.000 1.200 1.400 0.627 0.627 0.405 0.396 
0.500 2.000 0.281 3.000 1.200 1.400 0.631 0.632 0.392 0.380 
0.500 2.000 0.450 3.000 1.200 1.400 0.636 0.635 0.381 0.347 
0.500 2.000 0.619 3.000 1.200 1.400 0.632 0.639 0.365 0.272 

Table 3 
simulation (MC) and from the QCA model (MOD). Key: x 1  = x2 = 0.5. 

Local mole fraction ratios, r ,  = xz,xI/x2xtI and r2 = x ~ ~ x ~ / x ~ ~ x ~  calculated directly from 

0 2 / 0 1  E 2 I E 1  P T / E ~ ,  i., i. 2 ‘ I . M D  ‘ 1 . M O D  ‘ 2 , M D  ‘ 2 , M O D  

1 .000 
1 .Ooo 
1 .000 
1 .000 
1 .000 
1.000 
1 .OoO 
1 .000 
1.000 
1.000 
1 ,000 
1 ,000 
1 .OoO 
1 ,000 
1 .O00 
1 .000 
1 ,000 
1 .000 
1 .Ooo 

0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 

2.000 
2.000 
2.000 
2.000 
2.000 
2.000 

0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.925 
0.900 
0.100 
0.400 
0.700 
0.900 
0.100 
0.300 
0.500 
0.700 
0.900 

0.056 
0.169 
0.28 1 
0.394 
0.506 
0.619 

2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 

3.000 
3.000 
3.000 
3.000 
3.000 
3.000 

1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.500 
1.500 
I so0 
1.500 
1.750 
1.750 
1.750 
1.750 
I .750 

1.200 
1.200 
1.200 
1.200 
1.200 
1.200 

1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.100 
1.500 
1.500 
1.500 
1.500 
1.750 
1.750 
1.750 
1.750 
1.750 

1.400 
1.400 
1.400 
1.400 
1.400 
I .400 

1.221 
1.204 
1.144 
1.130 
1.174 
1.175 
1.084 
1.124 
0.987 
0.99 I 
1.379 
1.095 
0.945 
0.993 
1.379 
1.130 
0.99 1 
0.960 
0.920 

0.692 
0.677 
0.646 
0.622 
0.604 
0.575 

1.219 
1.208 
1.196 
1.185 
1.175 
1.164 
1.153 
1.142 
1.129 
1.132 
1.222 
1.197 
1.173 
1.157 
1.223 
1.209 
1.195 
1.181 
1.167 

0.669 
0.642 
0.612 
0.565 
0.490 
0.375 

0.780 
0.801 
0.822 
0.786 
0.814 
0.842 
0.8 I4 
0.867 
0.831 
0.854 
0.583 
0.766 
0.872 
0.934 
0.457 
0.668 
0.804 
0.894 
0.875 

1.685 
1.701 
1.709 
1.714 
1.736 
1.716 

0.756 
0.766 
0.776 
0.786 
0.797 
0.807 
0.818 
0.828 
0.842 
0.839 
0.753 
0.775 
0.798 
0.813 
0.752 
0.765 
0.777 
0.790 
0.803 

1.663 
1.694 
1.716 
1.735 
1.753 
1.773 
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x1 = x2, as it is in all of these cases. Therefore, the difference in the zi values must 
be the only cause for the difference in the x12 and x21 values. For Series B, Table 2 
reveals that for the unequal-sized molecules we have x12 > x1 and x21 < x2, where 
x1 = x2 = 0.5 due to the larger total coordination number of species-1 as opposed 
to species-2 because its interaction volume is larger. Species-1 is larger than species-2, 
so z1 > z 2 ,  The mean-field model treatment again is capable of reproducing these 
values remarkably well. 

In Table 3 we consider the local composition ratios, r ,  = x21x1/x2x11 and 
r2 = x12x2/x22x1. These ratios are also measures of the extent of non-random mixing 
or local composition effects. In the p + 0 limit for equi-sized equimolar binary 
mixtures we have, 

Table 4 Local mole fraction ratio, r3  = xz,xlz/xzzxI calculated directly from simulation (MC) and from 
the QCA model (MOD).  Key: x1 = x2 = 0.5. 

0 2 / 0 1  

1 .om 
1 .ooo 
1.000 
1.000 
1 .om 
1 .000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1 .ooo 
1.000 
1.000 
1.000 
1 .ooo 
1 .000 
1.000 
1.000 
1 .ooo 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

E Z / E I  P 

2.000 0.100 
2.000 0.200 
2.000 0.400 
2.000 0.500 
2.000 0.800 
2.000 0.900 
2.000 0.100 
2.000 0.200 
2.000 0.300 
2.000 0.400 
2.000 0.500 
2.000 0.600 
2.000 0.700 
2.000 0.800 
2.000 0.900 
2.000 0.100 
2.000 0.300 
2.000 0.500 
2.000 0.700 
2.000 0.900 
2.000 0.700 

2.000 0.056 
2.000 0.169 
2.000 0.281 
2.000 0.394 
2.000 0.506 
2.000 0.619 

T/E11 4 4 r3. MD r3. MOD 

2.000 1.100 1.100 0.952 0.92 1 
2.000 1.100 1.100 0.964 0.925 
2.000 1.100 1.100 0.888 0.932 
2.000 1.100 1.100 0.956 0.936 
2.000 1.100 1.100 0.974 0.946 
2.000 1.100 1.100 0.794 0.950 
2.000 1.500 1.500 0.804 0.920 
2.000 1.500 1.500 0.743 0.923 
2.000 1.500 1.500 0.837 0.926 
2.000 1.500 1.500 0.839 0.928 
2.000 1.500 1.500 0.789 0.931 
2.000 1.500 1.500 0.773 0.933 
2.000 1.500 1.500 0.823 0.936 
2.000 1.500 1.500 0.898 0.939 
2.000 1.500 1.500 0.927 0.941 
2.000 1.750 1.750 0.631 0.920 
2.000 1.750 1.750 0.755 0.924 
2.000 1.750 1.750 0.797 0.929 
2.000 1.750 1.750 0.859 0.933 
2.000 1.750 1.750 0.806 0.938 
2.000 1.750 1.750 1.066 0.933 

3.000 1.200 1.400 1.166 1.114 
3.000 1.200 1.400 1.152 1.088 
3.000 1.200 1.400 1.103 1.050 
3.000 1.200 1.400 1.066 0.980 
3.000 1.200 1.400 1.049 0.859 
3.000 1.200 1.400 0.986 0.664 
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220 D. M. HEYES 

In the p + 0 limit the model formulae (which reduces to Eqs. (53) and (54)) should 
agree exactly with the simulation data. Agreement with this and the density de- 
pendence produced by Lee, Sandler and Pate13 is achieved: the simulated ratio, rl 
starts at - 1.2 at p + 0. Also, r2 - 0.8 at p --* 0, the same as the model predictions, 
within statistics. For the least attractive species, the ratio goes to unity in the 
close-packed limit, whereas the species-2 ratio r2 remains significantly below unity 
throughout the whole fluid range. This demonstrates that r2 acts as a good probe 
of non-ideality. The local composition effects due to the attractive interaction are 
most apparent at low densities, becoming insignificant at higher densities for the least 
attractive component of Series A. Nonideality diminishes more rapidly with increas- 
ing density as I the reduced range of the interaction increases, as the mean field limit is 
approached". For Series B shows greater nonideality, persisting to much higher 
densities than for series A. Again the model from Eq. (38) gives an exceptionally good 
representation of these ratios. 

In Table 4 we present data for the ratio, r3 = x21x12/x22x11. Despite containing 
four local coordination numbers, this ratio departs less from unity than the ratios, 
r l  and r2 for both Series A and Series B. Largely, because of cancellation from within 
the two subcomponent ratios x21/x11 and x12/.x22. 

4 CONCLUSIONS 

In this work, we have investigated square-well fluid mixtures over a wide range of 
corediameters, interaction ranges, well-depths and temperatures. We used both 
Monte Carlo simulation methods and a new model for the local coordinations of 
the components that satisfies the low density limit (known exactly), and also the 
detailed balance conditions for the total number of pairs. From the local coordination 
number ratios we have observed that the extent of local composition non-ideality 
due to core-size and well-depth ratios up to - 2  is fairly small (typically less than 
20%), varying monotonically with average number density throughout the fluid 
range. The local coordination number model proposed here gives an excellent 
representation of the machine calculation data. 
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